Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 49990
IEEE transactions on image processing, 2017-09, Vol.26 (9), p.4446-4456
2017
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
DeepFix: A Fully Convolutional Neural Network for Predicting Human Eye Fixations
Ist Teil von
  • IEEE transactions on image processing, 2017-09, Vol.26 (9), p.4446-4456
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2017
Quelle
IEEE Xplore
Beschreibungen/Notizen
  • Understanding and predicting the human visual attention mechanism is an active area of research in the fields of neuroscience and computer vision. In this paper, we propose DeepFix, a fully convolutional neural network, which models the bottom-up mechanism of visual attention via saliency prediction. Unlike classical works, which characterize the saliency map using various hand-crafted features, our model automatically learns features in a hierarchical fashion and predicts the saliency map in an end-to-end manner. DeepFix is designed to capture semantics at multiple scales while taking global context into account, by using network layers with very large receptive fields. Generally, fully convolutional nets are spatially invariant-this prevents them from modeling location-dependent patterns (e.g., centre-bias). Our network handles this by incorporating a novel location-biased convolutional layer. We evaluate our model on multiple challenging saliency data sets and show that it achieves the state-of-the-art results.
Sprache
Englisch
Identifikatoren
ISSN: 1057-7149
eISSN: 1941-0042
DOI: 10.1109/TIP.2017.2710620
Titel-ID: cdi_ieee_primary_7937829

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX