Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
IEEE transactions on big data, 2018-03, Vol.4 (1), p.130-137
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Towards Max-Min Fair Resource Allocation for Stream Big Data Analytics in Shared Clouds
Ist Teil von
  • IEEE transactions on big data, 2018-03, Vol.4 (1), p.130-137
Ort / Verlag
Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Erscheinungsjahr
2018
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Distributed stream big data analytics platforms have emerged to tackle the continuously generated data streams. In stream big data analytics, the data processing workflow is abstracted as a directed graph referred to as a topology. Data are read from the storage and processed tuple by tuple, and these processing results are updated dynamically. The performance of a topology is evaluated by its throughput. This paper proposes an efficient resource allocation scheme for a heterogeneous stream big data analytics cluster shared by multiple topologies, in order to achieve max-min fairness in the utilities of the throughput for all the topologies. We first formulate a novel resource allocation problem, which is a mixed 0-1 integer program. The NP-hardness of the problem is rigorously proven. To tackle this problem, we transform the non-convex constraint to several linear constraints using linearization and reformulation techniques. Based on the analysis of the problem-specific structure and characteristics, we propose an approach that iteratively solves the continuous problem with a fixed set of discrete variables optimally, and updates the discrete variables heuristically. Simulations show that our proposed resource allocation scheme remarkably improves the max-min fairness in utilities of the topology throughput, and is low in computational complexity.
Sprache
Englisch
Identifikatoren
ISSN: 2332-7790
eISSN: 2332-7790, 2372-2096
DOI: 10.1109/TBDATA.2016.2638860
Titel-ID: cdi_ieee_primary_7782311

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX