Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 220
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, p.4753-4762
2016
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
DisturbLabel: Regularizing CNN on the Loss Layer
Ist Teil von
  • 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, p.4753-4762
Ort / Verlag
IEEE
Erscheinungsjahr
2016
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • During a long period of time we are combating overfitting in the CNN training process with model regularization, including weight decay, model averaging, data augmentation, etc. In this paper, we present DisturbLabel, an extremely simple algorithm which randomly replaces a part of labels as incorrect values in each iteration. Although it seems weird to intentionally generate incorrect training labels, we show that DisturbLabel prevents the network training from over-fitting by implicitly averaging over exponentially many networks which are trained with different label sets. To the best of our knowledge, DisturbLabel serves as the first work which adds noises on the loss layer. Meanwhile, DisturbLabel cooperates well with Dropout to provide complementary regularization functions. Experiments demonstrate competitive recognition results on several popular image recognition datasets.
Sprache
Englisch
Identifikatoren
eISSN: 1063-6919
DOI: 10.1109/CVPR.2016.514
Titel-ID: cdi_ieee_primary_7780883

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX