Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 104
IEEE transactions on multimedia, 2017-02, Vol.19 (2), p.293-301
2017
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Color-Guided Depth Recovery via Joint Local Structural and Nonlocal Low-Rank Regularization
Ist Teil von
  • IEEE transactions on multimedia, 2017-02, Vol.19 (2), p.293-301
Ort / Verlag
Piscataway: IEEE
Erscheinungsjahr
2017
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • High-quality depth recovery from RGB-D data has received increasingly more attention in recent years due to their wide applications from depth-based image rendering to three-dimensional imaging and video. Sharp contrast between high-quality color images and low-quality depth maps presents severe challenges to the development of color-guided depth recovery techniques. Previous works have emphasized either locally varying characteristics of color-depth dependence or nonlocal similarities around the discontinuities of the scene geometry. Therefore, it is desirable to exploit both local and nonlocal structural constraints for optimizing the performance of color-guided depth recovery. In this work, we propose a unified variational approach via joint local and nonlocal regularization. The local regularization term consists of two complementary parts-one characterizing the color-depth dependence in the gradient domain and the other in the spatial domain; nonlocal regularization involves a low-rank constraint suitable for large-scale depth discontinuities. Extensive experimental results are reported to show that our approach outperforms several existing state-of-the-art depth recovery methods on both synthetic and real-world data sets.
Sprache
Englisch
Identifikatoren
ISSN: 1520-9210
eISSN: 1941-0077
DOI: 10.1109/TMM.2016.2613824
Titel-ID: cdi_ieee_primary_7576720

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX