Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 11
2016 IEEE PES PowerAfrica, 2016, p.184-188
2016
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Modeling the condition of lithium ion batteries using the extreme learning machine
Ist Teil von
  • 2016 IEEE PES PowerAfrica, 2016, p.184-188
Ort / Verlag
IEEE
Erscheinungsjahr
2016
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Recent years have seen increased interest in the use of off-grid solutions for electrification of rural areas. Off-grid electrification (such as solar home systems and micro-grids) are particularly applicable to the rural African context, where little infrastructure exists and in many regions grid extension is prohibitively expensive. To be economically viable, these systems must maximize the power delivered while ensuring the health of energy storage devices. Batteries in particular are a key weakness and typically the first major component to fail. In this paper we present an improved and simplified method for simulating the state of charge (SoC) and state of health (SoH) of lithium-ion batteries. SoC and SoH are predicted using the Extreme Learning Machine (ELM) algorithm. ELM is a state of the art single layer, feed-forward neural network that is characterized by its good generalized performance and fast learning speed. Real-life battery data from the NASA-AMES dataset provides the benchmark for evaluation of the ELM model.
Sprache
Englisch
Identifikatoren
DOI: 10.1109/PowerAfrica.2016.7556597
Titel-ID: cdi_ieee_primary_7556597

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX