Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
1999 Information, Decision and Control. Data and Information Fusion Symposium, Signal Processing and Communications Symposium and Decision and Control Symposium. Proceedings (Cat. No.99EX251), 1999, p.335-340
Shared mixture distributions and shared mixture classifiers
Ist Teil von
1999 Information, Decision and Control. Data and Information Fusion Symposium, Signal Processing and Communications Symposium and Decision and Control Symposium. Proceedings (Cat. No.99EX251), 1999, p.335-340
Ort / Verlag
IEEE
Erscheinungsjahr
1999
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
The shared mixture classifier extends the conditional mixture classifier by allowing all the mixture components to contribute to the feature density model. We consider mixtures of elliptically symmetrical densities, and provide gradient ascent and expectation maximisation algorithms for maximum likelihood estimation. Three criteria are examined: the joint, non-discriminative and discriminative likelihoods. The relationships between these criteria are discussed, and we compare the performance of shared and conditional mixture classifiers. Results are presented for an application of a shared mixture classifier to the problem of detecting buried land mines using infrared and visual imagery. They show consistently better performance from the shared model.