Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 260
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, p.3098-3104
2015
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Optical flow for self-supervised learning of obstacle appearance
Ist Teil von
  • 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, p.3098-3104
Ort / Verlag
IEEE
Erscheinungsjahr
2015
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • We introduce a novel setup of self-supervised learning (SSL), in which optical flow provides the supervised outputs. Optical flow requires significant movement for obstacle detection. The main advantage of the introduced method is that after learning, a robot can detect obstacles without moving - reducing the risk of collisions in narrow spaces. We investigate this novel setup of SSL in the context of a Micro Air Vehicle (MAV) that needs to select a suitable landing place. Initially, when the MAV flies over a potential landing area, the optical flow processing estimates a `surface roughness' measure, capturing whether there are obstacles sticking out of the landing surface. This measure allows the MAV to select a safe landing place and then land with other optical flow measures such as the divergence. During flight, SSL takes place. For each image a texton distribution is extracted (capturing the visual appearance of the landing surface in sight), and mapped to the current roughness value by a linear regression function. We first demonstrate this principle to work with offline tests involving images captured on board an MAV, and then demonstrate the principle in flight. The experiments show that the MAV can land safely on the basis of optical flow. After learning it can also successfully select safe landing spots in hover. It is even shown that the appearance learning allows the pixel-wise segmentation of obstacles.
Sprache
Englisch
Identifikatoren
DOI: 10.1109/IROS.2015.7353805
Titel-ID: cdi_ieee_primary_7353805

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX