Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 26 von 97
2015 IEEE International Conference on Image Processing (ICIP), 2015, p.1349-1353
2015
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Recognizing hand-object interactions in wearable camera videos
Ist Teil von
  • 2015 IEEE International Conference on Image Processing (ICIP), 2015, p.1349-1353
Ort / Verlag
IEEE
Erscheinungsjahr
2015
Quelle
IEEE Xplore
Beschreibungen/Notizen
  • Wearable computing technologies are advancing rapidly and enabling users to easily record daily activities for applications such as life-logging or health monitoring. Recognizing hand and object interactions in these videos will help broaden application domains, but recognizing such interactions automatically remains a difficult task. Activity recognition from the first-person point-of-view is difficult because the video includes constant motion, cluttered backgrounds, and sudden changes of scenery. Recognizing hand-related activities is particularly challenging due to the many temporal and spatial variations induced by hand interactions. We present a novel approach to recognize hand-object interactions by extracting both local motion features representing the subtle movements of the hands and global hand shape features to capture grasp types. We validate our approach on multiple egocentric action datasets and show that state-of-the-art performance can be achieved by considering both local motion and global appearance information.
Sprache
Englisch
Identifikatoren
DOI: 10.1109/ICIP.2015.7351020
Titel-ID: cdi_ieee_primary_7351020

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX