Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems, 2015, p.1699-1702
Temperature, Voltage, and Aging Effects in Ring Oscillator Physical Unclonable Function
Ist Teil von
2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems, 2015, p.1699-1702
Ort / Verlag
IEEE
Erscheinungsjahr
2015
Quelle
IEEE Xplore
Beschreibungen/Notizen
Physical unclonable functions (PUFs) are security features that are based on process variations that occur during silicon chip fabrication. As PUFs are dependent on process variations, they need to be robust against reversible and irreversible temporal variabilities. In this paper, we present experimental results showing temporal variability in 4, 5, and 7-stage ring oscillator PUFs (ROPUFs). The reversible temporal variabilities are studied based on voltage and temperature variations, and the irreversible temporal variabilities are studied based on accelerated aging. Our results show that ROPUFs are sensitive to temperature and voltage variations regardless of the number of RO stages used. It is also observed that the aging, temperature, and voltage variation effects are observed to be uniformly distributed throughout the chip. This is evidenced by noting uniform changes in the RO frequency. Our results also show that most of the bit flips occur when the frequency difference in the RO pairs is low. This leads us to the conclusion that RO comparison pairs that pass high frequency threshold should be filtered to reduce temporal variabilities effect on the ROPUF. The experimental results also show that the 3-stage ROPUF has the lowest percentage of bit flip occurrences and the highest number of RO comparison pairs that pass high frequency threshold.