Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Radio-Frequency Interference Estimation Using Equivalent Dipole-Moment Models and Decomposition Method Based on Reciprocity
Ist Teil von
IEEE transactions on electromagnetic compatibility, 2016-02, Vol.58 (1), p.75-84
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2016
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
In modern electronic products, the noise from high-speed digital parts is likely to interfere with nearby receivers, causing radio-frequency interference (RFI) issues. In this paper, the equivalent dipole-moment models and a decomposition method based on reciprocity theory are proposed being used together to estimate the coupling from the noise source to the victim antennas. The dipole-moment models are extracted from the near fields of the noise source by solving the inverse problem. The tangential electromagnetic fields on a Huygens's surface, which enclose the victim antenna, can be calculated from these equivalent dipole-moment models. Then, the victim antenna only is treated as a radiator. The tangential electromagnetic fields from the radiating antenna on the same Huygens's surface can be obtained. With these two groups of the fields on the Huygens's surface, the reciprocity theory is applied to estimate the coupling from the noise source to the victim antenna. This method is validated by full-wave simulations and measurements of a simple printed circuit board. The proposed method provides convenience to estimate RFI issues in the early design stage and saves the time of RFI simulation and measurements.