Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 12
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, p.4566-4575
2015
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
CIDEr: Consensus-based image description evaluation
Ist Teil von
  • 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, p.4566-4575
Ort / Verlag
IEEE
Erscheinungsjahr
2015
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Automatically describing an image with a sentence is a long-standing challenge in computer vision and natural language processing. Due to recent progress in object detection, attribute classification, action recognition, etc., there is renewed interest in this area. However, evaluating the quality of descriptions has proven to be challenging. We propose a novel paradigm for evaluating image descriptions that uses human consensus. This paradigm consists of three main parts: a new triplet-based method of collecting human annotations to measure consensus, a new automated metric that captures consensus, and two new datasets: PASCAL-50S and ABSTRACT-50S that contain 50 sentences describing each image. Our simple metric captures human judgment of consensus better than existing metrics across sentences generated by various sources. We also evaluate five state-of-the-art image description approaches using this new protocol and provide a benchmark for future comparisons. A version of CIDEr named CIDEr-D is available as a part of MS COCO evaluation server to enable systematic evaluation and benchmarking.
Sprache
Englisch
Identifikatoren
ISSN: 1063-6919
eISSN: 1063-6919
DOI: 10.1109/CVPR.2015.7299087
Titel-ID: cdi_ieee_primary_7299087

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX