Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Intention-aware online POMDP planning for autonomous driving in a crowd
Ist Teil von
2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, p.454-460
Ort / Verlag
IEEE
Erscheinungsjahr
2015
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
This paper presents an intention-aware online planning approach for autonomous driving amid many pedestrians. To drive near pedestrians safely, efficiently, and smoothly, autonomous vehicles must estimate unknown pedestrian intentions and hedge against the uncertainty in intention estimates in order to choose actions that are effective and robust. A key feature of our approach is to use the partially observable Markov decision process (POMDP) for systematic, robust decision making under uncertainty. Although there are concerns about the potentially high computational complexity of POMDP planning, experiments show that our POMDP-based planner runs in near real time, at 3 Hz, on a robot golf cart in a complex, dynamic environment. This indicates that POMDP planning is improving fast in computational efficiency and becoming increasingly practical as a tool for robot planning under uncertainty.