Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 17
2015 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision, 2015, p.200-205
2015
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Enhancing decision-making by leveraging human intervention in large-scale sensor networks
Ist Teil von
  • 2015 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision, 2015, p.200-205
Ort / Verlag
IEEE
Erscheinungsjahr
2015
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Extensive deployment of sensor networks in recent years has led to the generation of large volumes of data. One approach to processing such large volumes of data is to rely on parallelized approaches based on architectures such as MapReduce. However, fully-automated processing without human intervention is error prone. Supporting human involvement in processing pipelines of data in a variety of contexts such as warfare, cyber security, threat monitoring, and malware analysis leads to improved decision-making. Although this kind of human-machine collaboration seems straightforward, involving a human operator into an automated processing pipeline presents some challenges. For example, due to the asynchronous nature of the human intervention, care must be taken to ensure that once a user-made correction or assertion is introduced, all necessary adjustment and reprocessing is performed. In addition, to make the best use of limited resources and processing capabilities, reprocessing of data in light of such corrections must be minimized. This paper introduces an innovative approach for human-machine integration in decisionmaking for large-scale sensor networks that rely on the popular Hadoop MapReduce framework.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX