Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 344
IEEE transactions on cybernetics, 2016-01, Vol.46 (1), p.219-232
2016
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Self-Adaptive Differential Evolution Algorithm With Zoning Evolution of Control Parameters and Adaptive Mutation Strategies
Ist Teil von
  • IEEE transactions on cybernetics, 2016-01, Vol.46 (1), p.219-232
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2016
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • The performance of the differential evolution (DE) algorithm is significantly affected by the choice of mutation strategies and control parameters. Maintaining the search capability of various control parameter combinations throughout the entire evolution process is also a key issue. A self-adaptive DE algorithm with zoning evolution of control parameters and adaptive mutation strategies is proposed in this paper. In the proposed algorithm, the mutation strategies are automatically adjusted with population evolution, and the control parameters evolve in their own zoning to self-adapt and discover near optimal values autonomously. The proposed algorithm is compared with five state-of-the-art DE algorithm variants according to a set of benchmark test functions. Furthermore, seven nonparametric statistical tests are implemented to analyze the experimental results. The results indicate that the overall performance of the proposed algorithm is better than those of the five existing improved algorithms.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX