Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
International Conference on Information Communication and Embedded Systems (ICICES2014), 2014, p.1-3
2014
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Enhancing sample classification for microarray datasets using genetic algorithm
Ist Teil von
  • International Conference on Information Communication and Embedded Systems (ICICES2014), 2014, p.1-3
Ort / Verlag
IEEE
Erscheinungsjahr
2014
Quelle
IEEE Xplore Digital Library
Beschreibungen/Notizen
  • Microarray is a high throughput technology that allows uncovering of thousands of genes concurrently. To conduct any biological test like disease prediction and classification in medical field, among the large amount of genes presented in gene expression data, only some particular amount of genes is effective for performing diagnostic test. A Supervised attribute clustering is used to find such initial co-expressed gene groups of clusters whose joint expression is strongly related with the class labels. The Mutual Information incorporates the information of sample categories to measure the similarity between attributes by sharing the information between each attributes. Thus the redundant and irrelevant attributes are eliminated. After forming the clusters, the GA is used to find the optimal feature so as to increase the class separability. Using this method, the diagnosis can be made easier and effective. The predictive accuracy is estimated using three classifiers such as K-nearest neighbors, naive bayes and Support Vector machine. Thus the overall approach provides excellent predictive capability for accurate medical diagnosis.
Sprache
Englisch
Identifikatoren
DOI: 10.1109/ICICES.2014.7033785
Titel-ID: cdi_ieee_primary_7033785

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX