Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 26 von 27
2014 IEEE International Conference on Data Mining, 2014, p.120-129
2014
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Sparse Real Estate Ranking with Online User Reviews and Offline Moving Behaviors
Ist Teil von
  • 2014 IEEE International Conference on Data Mining, 2014, p.120-129
Ort / Verlag
IEEE
Erscheinungsjahr
2014
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Ranking residential real estates based on investment values can provide decision making support for home buyers and thus plays an important role in estate marketplace. In this paper, we aim to develop methods for ranking estates based on investment values by mining users' opinions about estates from online user reviews and offline moving behaviors (e.g., Taxi traces, smart card transactions, check-ins). While a variety of features could be extracted from these data, these features are Interco related and redundant. Thus, selecting good features and integrating the feature selection into the fitting of a ranking model are essential. To this end, in this paper, we first strategically mine the fine-grained discrminative features from user reviews and moving behaviors, and then propose a probabilistic sparse pair wise ranking method for estates. Specifically, we first extract the explicit features from online user reviews which express users' opinions about point of interests (POIs) near an estate. We also mine the implicit features from offline moving behaviors from multiple perspectives (e.g., Direction, volume, velocity, heterogeneity, topic, popularity, etc.). Then we learn an estate ranking predictor by combining a pair wise ranking objective and a sparsity regularization in a unified probabilistic framework. And we develop an effective solution for the optimization problem. Finally, we conduct a comprehensive performance evaluation with real world estate related data, and the experimental results demonstrate the competitive performance of both features and the proposed model.
Sprache
Englisch
Identifikatoren
ISSN: 1550-4786
eISSN: 2374-8486
DOI: 10.1109/ICDM.2014.18
Titel-ID: cdi_ieee_primary_7023329

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX