Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 16
2014 IEEE 55th Annual Symposium on Foundations of Computer Science, 2014, p.316-325
2014
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Novel Polynomial Basis and Its Application to Reed-Solomon Erasure Codes
Ist Teil von
  • 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, 2014, p.316-325
Ort / Verlag
IEEE
Erscheinungsjahr
2014
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • In this paper, we present a new basis of polynomial over finite fields of characteristic two and then apply it to the encoding/decoding of Reed-Solomon erasure codes. The proposed polynomial basis allows that h-point polynomial evaluation can be computed in O(hlog 2 (h)) finite field operations with small leading constant. As compared with the canonical polynomial basis, the proposed basis improves the arithmetic complexity of addition, multiplication, and the determination of polynomial degree from O(hlog 2 (h)log 2 log 2 (h)) to O(hlog 2 (h)). Based on this basis, we then develop the encoding and erasure decoding algorithms for the (n=2 r , k) Reed-Solomon codes. Thanks to the efficiency of transform based on the polynomial basis, the encoding can be completed in O(nlog 2 (k)) finite field operations, and the erasure decoding in O(nlog 2 (n)) finite field operations. To the best of our knowledge, this is the first approach supporting Reed-Solomon erasure codes over characteristic-2 finite fields while achieving a complexity of O(nlog 2 (n)), in both additive and multiplicative complexities. As the complexity leading factor is small, the algorithms are advantageous in practical applications.
Sprache
Englisch
Identifikatoren
ISSN: 0272-5428
DOI: 10.1109/FOCS.2014.41
Titel-ID: cdi_ieee_primary_6979016

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX