Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 86
2014 22nd International Conference on Pattern Recognition, 2014, p.3280-3285
2014
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Automatic Liver Segmentation and Hepatic Fat Fraction Assessment in MRI
Ist Teil von
  • 2014 22nd International Conference on Pattern Recognition, 2014, p.3280-3285
Ort / Verlag
IEEE
Erscheinungsjahr
2014
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Automated assessment of hepatic fat fraction is clinically important. A robust and precise segmentation would enable accurate, objective and consistent measurement of liver fat fraction for disease quantification, therapy monitoring and drug development. However, segmenting the liver in clinical trials is a challenging task due to the variability of liver anatomy as well as the diverse sources the images were acquired from. In this paper, we propose an automated and robust framework for liver segmentation and assessment. It uses single statistical atlas registration to initialize a robust deformable model to get fine segmentation. Fat fraction map is computed by using chemical shift based method in the delineated region of liver. This proposed method is validated on 14 abdominal magnetic resonance (MR) volumetric scans. The qualitative and quantitative comparisons show that our proposed method can achieve better segmentation accuracy with less variance comparing with an automatic graph cut method. Experimental results demonstrate the promises of our assessment framework.
Sprache
Englisch
Identifikatoren
ISSN: 1051-4651
eISSN: 2831-7475
DOI: 10.1109/ICPR.2014.565
Titel-ID: cdi_ieee_primary_6977277

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX