Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 395
IEEE transactions on wireless communications, 2015-02, Vol.14 (2), p.781-793
2015
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Robust Frequency-Hopping Spectrum Estimation Based on Sparse Bayesian Method
Ist Teil von
  • IEEE transactions on wireless communications, 2015-02, Vol.14 (2), p.781-793
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2015
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • This paper considers the problem of estimating multiple frequency hopping signals with unknown hopping pattern. By segmenting the received signals into overlapped measurements and leveraging the property that frequency content at each time instant is intrinsically parsimonious, a sparsity-inspired high-resolution time-frequency representation (TFR) is developed to achieve robust estimation. Inspired by the sparse Bayesian learning algorithm, the problem is formulated hierarchically to induce sparsity. In addition to the sparsity, the hopping pattern is exploited via temporal-aware clustering by exerting a dependent Dirichlet process prior over the latent parametric space. The estimation accuracy of the parameters can be greatly improved by this particular information-sharing scheme and sharp boundary of the hopping time estimation is manifested. Moreover, the proposed algorithm is further extended to multi-channel cases, where task-relation is utilized to obtain robust clustering of the latent parameters for better estimation performance. Since the problem is formulated in a full Bayesian framework, labor-intensive parameter tuning process can be avoided. Another superiority of the approach is that high-resolution instantaneous frequency estimation can be directly obtained without further refinement of the TFR. Results of numerical experiments show that the proposed algorithm can achieve superior performance particularly in low signal-to-noise ratio scenarios compared with other recently reported ones.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX