Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Assimilation of SMOS Soil Moisture for Quantifying Drought Impacts on Crop Yield in Agricultural Regions
Ist Teil von
IEEE journal of selected topics in applied earth observations and remote sensing, 2014-09, Vol.7 (9), p.3867-3879
Ort / Verlag
IEEE
Erscheinungsjahr
2014
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
This study investigates the effects of agricultural drought on crop yields, through integration of crop growth models and remote sensing observations. The soil moisture (SM) product from SM and Ocean Salinity (SMOS) mission obtained at 25 km was downscaled to a spatial resolution of 1 km, compatible with the crop models. The downscaling algorithm is based upon information theoretic learning and uses data-driven probabilistic relationships between high-resolution remotely sensed products that are sensitive to SM and in situ SM. The downscaled SM values are assimilated in the crop model using an Ensemble Kalman filter-based augmented state-vector technique that estimates states and parameters simultaneously. The downscaling and assimilation framework are implemented for predominantly agricultural region of the lower La-Plata Basin (LPB) in Brazil during two growing seasons. This rain-fed region was affected by agricultural drought in the second season, indicated by markedly lower precipitation compared to the first growing season. The downscaled SM was compared with the in situ SM at a validation site and the root mean square difference (RMSD) was 0.045 m 3 /m 3 . The crop yields estimated by the downscaling-assimilation framework were compared with those provided by the Companhia Nacional de Asastecimento (CONAB) and Instituto Brasileiro de Geografia e Estatistica (IBGE). The assimilated yields are improved during both seasons with increased improvement during the second season that was affected by agricultural drought. The differences between the assimilated and observed crop yields were 16.8% during the first growing season and 4.37% during the second season.