Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 7752
2013 IEEE International Conference on Computer Vision, 2013, p.1489-1496
2013
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Hybrid Deep Learning for Face Verification
Ist Teil von
  • 2013 IEEE International Conference on Computer Vision, 2013, p.1489-1496
Ort / Verlag
IEEE
Erscheinungsjahr
2013
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • This paper proposes a hybrid convolutional network (ConvNet)-Restricted Boltzmann Machine (RBM) model for face verification in wild conditions. A key contribution of this work is to directly learn relational visual features, which indicate identity similarities, from raw pixels of face pairs with a hybrid deep network. The deep ConvNets in our model mimic the primary visual cortex to jointly extract local relational visual features from two face images compared with the learned filter pairs. These relational features are further processed through multiple layers to extract high-level and global features. Multiple groups of ConvNets are constructed in order to achieve robustness and characterize face similarities from different aspects. The top-layer RBM performs inference from complementary high-level features extracted from different ConvNet groups with a two-level average pooling hierarchy. The entire hybrid deep network is jointly fine-tuned to optimize for the task of face verification. Our model achieves competitive face verification performance on the LFW dataset.
Sprache
Englisch
Identifikatoren
ISSN: 1550-5499
eISSN: 2380-7504
DOI: 10.1109/ICCV.2013.188
Titel-ID: cdi_ieee_primary_6751295

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX