Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
TENCON '97 Brisbane - Australia. Proceedings of IEEE TENCON '97. IEEE Region 10 Annual Conference. Speech and Image Technologies for Computing and Telecommunications (Cat. No.97CH36162), 1997, Vol.2, p.803-806 vol.2
Ort / Verlag
IEEE
Erscheinungsjahr
1997
Quelle
IEEE Xplore
Beschreibungen/Notizen
Traditional k-means algorithms for data clustering are based on the assumption that the underlying distribution of the data is Gaussian. In this paper, we propose a new clustering algorithm that makes use of higher order statistics for improved data clustering when the distribution of the data is non-Gaussian. The algorithm uses an HOS-based decision measure which is derived from a series expansion of the multivariate probability density function in terms of the multivariate Gaussian and the Hermite polynomials. Experimental results are presented on the performance of the proposed algorithm using color images segmentation.