Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 359
2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.1289-1292
2012
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Neighbor embedding based single-image super-resolution using Semi-Nonnegative Matrix Factorization
Ist Teil von
  • 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.1289-1292
Ort / Verlag
IEEE
Erscheinungsjahr
2012
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • This paper describes a novel method for single-image super-resolution (SR) based on a neighbor embedding technique which uses Semi-Nonnegative Matrix Factorization (SNMF). Each low-resolution (LR) input patch is approximated by a linear combination of nearest neighbors taken from a dictionary. This dictionary stores low-resolution and corresponding high-resolution (HR) patches taken from natural images and is thus used to infer the HR details of the super-resolved image. The entire neighbor embedding procedure is carried out in a feature space. Features which are either the gradient values of the pixels or the mean-subtracted luminance values are extracted from the LR input patches, and from the LR and HR patches stored in the dictionary. The algorithm thus searches for the K nearest neighbors of the feature vector of the LR input patch and then computes the weights for approximating the input feature vector. The use of SNMF for computing the weights of the linear approximation is shown to have a more stable behavior than the use of LLE and lead to significantly higher PSNR values for the super-resolved images.
Sprache
Englisch
Identifikatoren
ISBN: 1467300454, 9781467300452
ISSN: 1520-6149
eISSN: 2379-190X
DOI: 10.1109/ICASSP.2012.6288125
Titel-ID: cdi_ieee_primary_6288125

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX