Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 19559
IEEE transactions on biomedical engineering, 2012-08, Vol.59 (8), p.2180-2190
2012
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Intention-Based EMG Control for Powered Exoskeletons
Ist Teil von
  • IEEE transactions on biomedical engineering, 2012-08, Vol.59 (8), p.2180-2190
Ort / Verlag
New York, NY: IEEE
Erscheinungsjahr
2012
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Electromyographical (EMG) signals have been frequently used to estimate human muscular torques. In the field of human-assistive robotics, these methods provide valuable information to provide effectively support to the user. However, their usability is strongly limited by the necessity of complex user-dependent and session-dependent calibration procedures, which confine their use to the laboratory environment. Nonetheless, an accurate estimate of muscle torque could be unnecessary to provide effective movement assistance to users. The natural ability of human central nervous system of adapting to external disturbances could compensate for a lower accuracy of the torque provided by the robot and maintain the movement accuracy unaltered, while the effort is reduced. In order to explore this possibility, in this paper we study the reaction of ten healthy subjects to the assistance provided through a proportional EMG control applied by an elbow powered exoskeleton. This system gives only a rough estimate of the user muscular torque but does not require any specific calibration. Experimental results clearly show that subjects adapt almost instantaneously to the assistance provided by the robot and can reduce their effort while keeping full control of the movement under different dynamic conditions (i.e., no alterations of movement accuracy are observed).

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX