Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Speaker identification based on Classification Sub-space Gaussian Mixture Model
Ist Teil von
2011 International Conference on Image Analysis and Signal Processing, 2011, p.607-611
Ort / Verlag
IEEE
Erscheinungsjahr
2011
Quelle
IEEE Xplore
Beschreibungen/Notizen
This paper proposes a Classification Feature Sub-space Gaussian Mixture Model (CGMM), which can improve the training efficiency of conventional Gaussian Mixture Model (GMM) in speaker identification. By taking the advantage of the centralization tendency of similar features in phonetic signals, CGMM uses Vector Quantization (VQ) technique to cluster the similar features into a sub-space. In the procedure of training, it establishes a GMM for each sub-space instead of a GMM for all the feature vectors. Our experimental findings show that as the feature vectors were more concentrated in each sub-space, CGMM enhanced the training efficiency and recognition rate of speaker identification as compared with conventional GMM.