Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 37
IEEE transactions on biomedical engineering, 2012-03, Vol.59 (3), p.687-696
2012
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Multisensor Data Fusion for Physical Activity Assessment
Ist Teil von
  • IEEE transactions on biomedical engineering, 2012-03, Vol.59 (3), p.687-696
Ort / Verlag
New York, NY: IEEE
Erscheinungsjahr
2012
Quelle
IEEE/IET Electronic Library
Beschreibungen/Notizen
  • This paper presents a sensor fusion method for assessing physical activity (PA) of human subjects, based on support vector machines (SVMs). Specifically, acceleration and ventilation measured by a wearable multisensor device on 50 test subjects performing 13 types of activities of varying intensities are analyzed, from which activity type and energy expenditure are derived. The results show that the method correctly recognized the 13 activity types 88.1% of the time, which is 12.3% higher than using a hip accelerometer alone. Also, the method predicted energy expenditure with a root mean square error of 0.42 METs, 22.2% lower than using a hip accelerometer alone. Furthermore, the fusion method was effective in reducing the subject-to-subject variability (standard deviation of recognition accuracies across subjects) in activity recognition, especially when data from the ventilation sensor were added to the fusion model. These results demonstrate that the multisensor fusion technique presented is more effective in identifying activity type and energy expenditure than the traditional accelerometer-alone-based methods.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX