Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Learning Viewpoint Planning in Active Recognition on a Small Sampling Budget: A Kriging Approach
Ist Teil von
2010 Ninth International Conference on Machine Learning and Applications, 2010, p.169-174
Ort / Verlag
IEEE
Erscheinungsjahr
2010
Quelle
IEEE/IET Electronic Library (IEL)
Beschreibungen/Notizen
This paper focuses on viewpoint planning for 3D active object recognition. The objective is to design a planning policy into a Q-learning framework with a limited number of samples. Most existing stochastic techniques are therefore inapplicable. We propose to use Kriging and bayesian Optimization coupled with Q-learning to obtain a computationally-efficient viewpoint-planning design, under a restrictive sampling budget. Experimental results on a representative database, including a comparison with classical approaches, show promising results for this strategy.