Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
IEEE transactions on image processing, 2011-03, Vol.20 (3), p.681-695
2011
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems
Ist Teil von
  • IEEE transactions on image processing, 2011-03, Vol.20 (3), p.681-695
Ort / Verlag
New York, NY: IEEE
Erscheinungsjahr
2011
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • We propose a new fast algorithm for solving one of the standard approaches to ill-posed linear inverse problems (IPLIP), where a (possibly nonsmooth) regularizer is minimized under the constraint that the solution explains the observations sufficiently well. Although the regularizer and constraint are usually convex, several particular features of these problems (huge dimensionality, nonsmoothness) preclude the use of off-the-shelf optimization tools and have stimulated a considerable amount of research. In this paper, we propose a new efficient algorithm to handle one class of constrained problems (often known as basis pursuit denoising) tailored to image recovery applications. The proposed algorithm, which belongs to the family of augmented Lagrangian methods, can be used to deal with a variety of imaging IPLIP, including deconvolution and reconstruction from compressive observations (such as MRI), using either total-variation or wavelet-based (or, more generally, frame-based) regularization. The proposed algorithm is an instance of the so-called alternating direction method of multipliers, for which convergence sufficient conditions are known; we show that these conditions are satisfied by the proposed algorithm. Experiments on a set of image restoration and reconstruction benchmark problems show that the proposed algorithm is a strong contender for the state-of-the-art.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX