Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Kernel covariance image region description for object tracking
Ist Teil von
2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.865-868
Ort / Verlag
IEEE
Erscheinungsjahr
2009
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
We propose a nonlinear covariance region descriptor for target tracking. The target object appearance and spatial information is represented using a covariance matrix in a target derived Hilbert space using kernel principal component analysis. A similarity measure is derived, which computes the similarity of a candidate image region to the learned covariance matrix. A variational technique is provided to maximize the similarity measure, which iteratively finds the best matched object region. Tracking performance is demonstrated on a variety of sequences containing noise, occlusions, illumination changes, background clutter, etc.