Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 92
2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, p.2090-2096
2009
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Nonparametric discriminant HMM and application to facial expression recognition
Ist Teil von
  • 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, p.2090-2096
Ort / Verlag
IEEE
Erscheinungsjahr
2009
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • This paper presents a nonparametric discriminant HMM and applies it to facial expression recognition. In the proposed HMM, we introduce an effective nonparametric output probability estimation method to increase the discrimination ability at both hidden state level and class level. The proposed method uses a nonparametric adaptive kernel to utilize information from all classes and improve the discrimination at class level. The discrimination between hidden states is increased by defining membership coefficients which associate each reference vector with hidden states. The adaption of such coefficients is obtained by the expectation maximization (EM) method. Furthermore, we present a general formula for the estimation of output probability, which provides a way to develop new HMMs. Finally, we evaluate the performance of the proposed method on the CMU expression database and compare it with other nonparametric HMMs.
Sprache
Englisch
Identifikatoren
ISBN: 1424439922, 9781424439928
ISSN: 1063-6919
DOI: 10.1109/CVPR.2009.5206509
Titel-ID: cdi_ieee_primary_5206509

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX