Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 3988
IEEE transactions on fuzzy systems, 2009-10, Vol.17 (5), p.1092-1105
2009
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
A Recurrent Self-Evolving Interval Type-2 Fuzzy Neural Network for Dynamic System Processing
Ist Teil von
  • IEEE transactions on fuzzy systems, 2009-10, Vol.17 (5), p.1092-1105
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2009
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • This paper proposes a recurrent self-evolving interval type-2 fuzzy neural network (RSEIT2FNN) for dynamic system processing. An RSEIT2FNN incorporates type-2 fuzzy sets in a recurrent neural fuzzy system in order to increase the noise resistance of a system. The antecedent parts in each recurrent fuzzy rule in the RSEIT2FNN are interval type-2 fuzzy sets, and the consequent part is of the Takagi-Sugeno-Kang (TSK) type with interval weights. The antecedent part of RSEIT2FNN forms a local internal feedback loop by feeding the rule firing strength of each rule back to itself. The TSK-type consequent part is a linear model of exogenous inputs. The RSEIT2FNN initially contains no rules; all rules are learned online via structure and parameter learning. The structure learning uses online type-2 fuzzy clustering. For the parameter learning, the consequent part parameters are tuned by a rule-ordered Kalman filter algorithm to improve learning performance. The antecedent type-2 fuzzy sets and internal feedback loop weights are learned by a gradient descent algorithm. The RSEIT2FNN is applied to simulations of dynamic system identifications and chaotic signal prediction under both noise-free and noisy conditions. Comparisons with type-1 recurrent fuzzy neural networks validate the performance of the RSEIT2FNN.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX