Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 27
2008 Eighth IEEE International Conference on Data Mining, 2008, p.1001-1006
2008
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Active Learning of Equivalence Relations by Minimizing the Expected Loss Using Constraint Inference
Ist Teil von
  • 2008 Eighth IEEE International Conference on Data Mining, 2008, p.1001-1006
Ort / Verlag
IEEE
Erscheinungsjahr
2008
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Selecting promising queries is the key to effective active learning. In this paper, we investigate selection techniques for the task of learning an equivalence relation where the queries are about pairs of objects. As the target relation satisfies the axioms of transitivity, from one queried pair additional constraints can be inferred. We derive both the upper and lower bound on the number of queries needed to converge to the optimal solution. Besides restricting the set of possible solutions, constraints can be used as training data for learning a similarity measure. For selecting queries that result in a large number of meaningful constraints, we present an approximative optimal selection technique that greedily minimizes the expected loss in each round of active learning. This technique makes use of inference of expected constraints. Besides the theoretical results, an extensive evaluation for the application of record linkage shows empirically that the proposed selection method leads to both interesting and a high number of constraints.
Sprache
Englisch
Identifikatoren
ISBN: 076953502X, 9780769535029
ISSN: 1550-4786
eISSN: 2374-8486
DOI: 10.1109/ICDM.2008.41
Titel-ID: cdi_ieee_primary_4781215

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX