Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 15082
IEEE transactions on image processing, 2008-09, Vol.17 (9), p.1709-1720
2008
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Wavelet Feature Selection for Image Classification
Ist Teil von
  • IEEE transactions on image processing, 2008-09, Vol.17 (9), p.1709-1720
Ort / Verlag
New York, NY: IEEE
Erscheinungsjahr
2008
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Energy distribution over wavelet subbands is a widely used feature for wavelet packet based texture classification. Due to the overcomplete nature of the wavelet packet decomposition, feature selection is usually applied for a better classification accuracy and a compact feature representation. The majority of wavelet feature selection algorithms conduct feature selection based on the evaluation of each subband separately, which implicitly assumes that the wavelet features from different subbands are independent. In this paper, the dependence between features from different subbands is investigated theoretically and simulated for a given image model. Based on the analysis and simulation, a wavelet feature selection algorithm based on statistical dependence is proposed. This algorithm is further improved by combining the dependence between wavelet feature and the evaluation of individual feature component. Experimental results show the effectiveness of the proposed algorithms in incorporating dependence into wavelet feature selection.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX