Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 10
2008 International Conference on BioMedical Engineering and Informatics, 2008, Vol.1, p.306-310
2008
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Missing Attribute Value Prediction Based on Artificial Neural Network and Rough Set Theory
Ist Teil von
  • 2008 International Conference on BioMedical Engineering and Informatics, 2008, Vol.1, p.306-310
Ort / Verlag
IEEE
Erscheinungsjahr
2008
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • In this research, artificial neural network (ANN) combined with rough set theory (RST), named as ANNRST, is proposed to predict missing values of attribute. The prediction of missing values of attribute is applied on heart disease data from UCI datasets. The ANN used is multilayer perceptron (MLP) with resilient back-propagation learning. RST can reduce the dimensionality of attributes through its reduct. Reduct is used as input of ANN combined with decision attribute. By simulating of missing values, the prediction accuracy of ANN is compared to ANNRST. The accuracy of ANNRST is also compared with missing data imputation ofk-Nearest Neighbor (k-NN), most common attribute value method and ANN with piecewise linear network-orthonormal least square feature selection (PLN-OLS). Simulation results show that ANNRST can predict the missing value with maximum accuracy close to ANN without dimensionality reduction (pure ANN) and outperform k-NN, most common attribute value method, and ANN with PLN-OLS.
Sprache
Englisch
Identifikatoren
ISBN: 9780769531182, 0769531180
ISSN: 1948-2914
eISSN: 1948-2922
DOI: 10.1109/BMEI.2008.322
Titel-ID: cdi_ieee_primary_4548682

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX