Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 1018
2007 International Conference on Machine Learning and Cybernetics, 2007, Vol.6, p.3630-3635
2007
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
On Combining Distributed SVMs by Simple Bayesian Formalism Rules
Ist Teil von
  • 2007 International Conference on Machine Learning and Cybernetics, 2007, Vol.6, p.3630-3635
Ort / Verlag
IEEE
Erscheinungsjahr
2007
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Support vector machines (SVMs) has been accepted as a fashionable method in machine learning community. However, it cannot be easily scaled to handle large scale problems for its time and space complexity that is around quadratic with respect to the number of training samples. This paper proposes to combine distributed SVMs by simple Bayesian formalism rules (B-SVMs). B-SVMs randomly decomposes a large-scale task into many smaller and simpler sub-tasks in training phase and uses simple Bayesian formalism rules to make decision for final classification in test phase. B-SVMs was compared with single SVMs that is trained on entire training data set, parallel SVMs combined by majority voting (MV-SVMs), and one kind of fast modular SVMs (FM-SVMs). Experimental results on four problems show that B-SVMs can get higher accuracy than MV-SVMs and FM-SVMs does, the proposed algorithm can significantly reduce training and test time. More importantly, it produces test accuracy that is almost the same as single SVMs does.
Sprache
Englisch
Identifikatoren
ISBN: 1424409721, 9781424409723
ISSN: 2160-133X
DOI: 10.1109/ICMLC.2007.4370776
Titel-ID: cdi_ieee_primary_4370776

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX