Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 3256
IEEE transactions on knowledge and data engineering, 2007-08, Vol.19 (8), p.1026-1041
2007
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
An Entropy Weighting k-Means Algorithm for Subspace Clustering of High-Dimensional Sparse Data
Ist Teil von
  • IEEE transactions on knowledge and data engineering, 2007-08, Vol.19 (8), p.1026-1041
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2007
Quelle
IEEE Xplore
Beschreibungen/Notizen
  • This paper presents a new k-means type algorithm for clustering high-dimensional objects in sub-spaces. In high-dimensional data, clusters of objects often exist in subspaces rather than in the entire space. For example, in text clustering, clusters of documents of different topics are categorized by different subsets of terms or keywords. The keywords for one cluster may not occur in the documents of other clusters. This is a data sparsity problem faced in clustering high-dimensional data. In the new algorithm, we extend the k-means clustering process to calculate a weight for each dimension in each cluster and use the weight values to identify the subsets of important dimensions that categorize different clusters. This is achieved by including the weight entropy in the objective function that is minimized in the k-means clustering process. An additional step is added to the k-means clustering process to automatically compute the weights of all dimensions in each cluster. The experiments on both synthetic and real data have shown that the new algorithm can generate better clustering results than other subspace clustering algorithms. The new algorithm is also scalable to large data sets.
Sprache
Englisch
Identifikatoren
ISSN: 1041-4347
eISSN: 1558-2191
DOI: 10.1109/TKDE.2007.1048
Titel-ID: cdi_ieee_primary_4262534

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX