Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Improved Manifold Coordinate Representations of Large-Scale Hyperspectral Scenes
Ist Teil von
IEEE transactions on geoscience and remote sensing, 2006-10, Vol.44 (10), p.2786-2803
Ort / Verlag
New York, NY: IEEE
Erscheinungsjahr
2006
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
In recent publications, we have presented a data-driven approach to representing the nonlinear structure of hyperspectral imagery using manifold coordinates. The approach relies on graph methods to derive geodesic distances on the high-dimensional hyperspectral data manifold. From these distances, a set of intrinsic manifold coordinates that parameterizes the data manifold is derived. Scaling the solution relied on divide-conquer-and-merge strategies for the manifold coordinates because of the computational and memory scaling of the geodesic coordinate calculations. In this paper, we improve the scaling performance of isometric mapping (ISOMAP) and achieve full-scene global manifold coordinates while removing artifacts generated by the original methods. The CPU time of the enhanced ISOMAP approach scales as O(N log^2(N)) , where N is the number of samples, while the memory requirement is bounded by O(Nlog(N)) . Full hyperspectral scenes of O(10^6) samples or greater are obtained via a reconstruction algorithm, which allows insertion of large numbers of samples into a representative "backboneâ⬠manifold obtained for a smaller but representative set of O(10^5) samples. We provide a classification example using a coastal hyperspectral scene to illustrate the approach.