Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Trajectory clustering and stochastic approximation for robot programming by demonstration
Ist Teil von
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, p.1029-1034
Ort / Verlag
IEEE
Erscheinungsjahr
2005
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
This paper describes the trajectory learning component of a programming by demonstration (PbD) system for manipulation tasks. In case of multiple user demonstrations, the proposed approach clusters a set of hand trajectories and recovers smooth robot trajectories overcoming sensor noise and human motion inconsistency problems. More specifically, we integrate a geometric approach for trajectory clustering with a stochastic procedure for trajectory evaluation based on hidden Markov models. Furthermore, we propose a method for human hand trajectory reconstruction with NURBS curves by means of a best-fit data smoothing algorithm. Some experiments show the viability and effectiveness of the approach.