Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 68
2004 Conference on Computer Vision and Pattern Recognition Workshop, 2004, p.100-100
2004
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
On-line Learning of Motion Patterns using an Expert Learning Framework
Ist Teil von
  • 2004 Conference on Computer Vision and Pattern Recognition Workshop, 2004, p.100-100
Ort / Verlag
IEEE
Erscheinungsjahr
2004
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Tracking uncertain mobile objects such as humans and vehicles is an important problem in computer vision, robotics, and geo-spatial visualization. As the name suggests, predictor-corrector tracking is performed in two steps -prediction and correction. Prediction steps have typically utilized a-priori motion model most common of which is a uniform motion model. In this work, we apply an expert learning framework for on-line prediction and learning the motion of an uncertain mobile object. We define a number of probabilistic experts, each of which predicts the future position of the object with some uncertainty and then combine the predictions of all the experts to produce an estimate of the object's location. Individual experts predictions are weighted adaptively depending on their performance. We show that this adaptive combination is powerful when there are changes in the pattern of the object's motion. Results of our algorithm are compared with linear extrapolation and the best off-line expert predictions. We have tested our algorithm with synthetic data using uniform and non-uniform patterns as well as real data acquired using GPS equipment in presence of intermittent and highly erroneous data.
Sprache
Englisch
Identifikatoren
DOI: 10.1109/CVPR.2004.412
Titel-ID: cdi_ieee_primary_1384894

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX