Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 11

Details

Autor(en) / Beteiligte
Titel
NTIRE 2024 Restore Any Image Model (RAIM) in the Wild Challenge
Ist Teil von
  • 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2024, p.6632-6640
Ort / Verlag
IEEE
Erscheinungsjahr
2024
Quelle
IEEE/IET Electronic Library
Beschreibungen/Notizen
  • In this paper, we review the NTIRE 2024 challenge on Restore Any Image Model (RAIM) in the Wild. The RAIM challenge constructed a benchmark for image restoration in the wild, including real-world images with/without reference ground truth in various scenarios from real applications. The participants were required to restore the real-captured images from complex and unknown degradation, where generative perceptual quality and fidelity are desired in the restoration result. The challenge consisted of two tasks. Task one employed real referenced data pairs, where quantitative evaluation is available. Task two used unpaired images, and a comprehensive user study was conducted. The challenge attracted more than 200 registrations, where 39 of them submitted results with more than 400 submissions. Top-ranked methods improved the state-of-the-art restoration performance and obtained unanimous recognition from all 18 judges. The proposed datasets are available at https : //drive.google.com/file/d/1DqbxUoiUqkAIkExu3jZAqoElr_nu1IXb/view?usp=sharing and the homepage of this challenge is at https : //codalab.lisn.upsaclay.fr/competitions/17632.
Sprache
Englisch
Identifikatoren
eISSN: 2160-7516
DOI: 10.1109/CVPRW63382.2024.00657
Titel-ID: cdi_ieee_primary_10678258

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX