Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 15
2024 5th International Conference for Emerging Technology (INCET), 2024, p.1-6
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Dynamic Framework for Optimized Cloud Service Selection Using Adaptive Weighting and Enhanced TOPSIS
Ist Teil von
  • 2024 5th International Conference for Emerging Technology (INCET), 2024, p.1-6
Ort / Verlag
IEEE
Erscheinungsjahr
2024
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • As cloud services become increasingly integral to business and technology landscapes, effective selection and composition of these services are paramount. This paper introduces a novel framework that significantly enhances the cloud service selection process by incorporating an advanced Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) algorithm. The proposed framework uniquely adapts to real-time user preferences and market trends through a dynamic weighting system, thereby refining decision-making accuracy. Comparative scenario-based testing shows an 88% improvement in decision accuracy over existing methods. Additionally, the modified TOPSIS algorithm achieves execution time reductions between 12 % and 45%, outperforming standard benchmarks. This framework is further distinguished by a dynamic weighting mechanism tailored to user feedback, which has resulted in high user satisfaction, averaging 4.2 out of 5. Comprehensive evaluation criteria within the framework ensure a thorough assessment of cloud service suitability, establishing a robust, adaptive, and user-centric approach to navigating the complex cloud service landscape.
Sprache
Englisch
Identifikatoren
DOI: 10.1109/INCET61516.2024.10593444
Titel-ID: cdi_ieee_primary_10593444

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX