Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 198
2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT), 2024, p.441-446
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Large Language Model Based on Full-Text Retrieval for Temporal Knowledge Q&A Approach
Ist Teil von
  • 2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT), 2024, p.441-446
Ort / Verlag
IEEE
Erscheinungsjahr
2024
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Knowledge Q&A is one of the hot research topics in the field of natural language processing, and temporal knowledge Q&A is a difficult area of Q&A reasoning because it also needs to consider the temporal relationship of knowledge. Today's research usually focuses on the word vector similarity between knowledge and questions as an important basis for answering, while ignoring the sentence granularity semantic information embedded in the knowledge. In this paper, we propose a method of temporal knowledge Q&A for large language models based on full-text retrieval, firstly, the sentence granularity knowledge recall is performed by Elasticsearch so that large language models can learn the knowledge that is highly relevant to the problem, and then verify the temporal knowledge Q&A ability of large language models under Zero-shot, One-shot and Few-shot. The experiments were conducted on the ICEWS05-15 dataset, and the accuracy of answers was significantly improved, demonstrating the effectiveness of the temporal knowledge Q&A method for large language models based on Elasticsearch.
Sprache
Englisch
Identifikatoren
DOI: 10.1109/AINIT61980.2024.10581693
Titel-ID: cdi_ieee_primary_10581693

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX