Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Fraud detection: Comparison of traditional methods, hybrid methods, monarch butterfly optimization, and Temporal Convolutional Networks
Ist Teil von
2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), 2024, p.110-116
Ort / Verlag
IEEE
Erscheinungsjahr
2024
Quelle
IEEE Xplore
Beschreibungen/Notizen
In recent years Transaction Fraud has happened nowadays through credit card transactions or online transactions This article provides an overview of different algorithms, methods, and techniques used to identify fraudulent transactions. This article provides an overview of different algorithms used for identification fraud. This study has analyzed different types of models such as logistic regression, decision trees, random forests, and support vector machines to identify suspicious activities. By taking the Decision tree as a Base estimator and Ada Boost as an n estimator, this study has developed a new model. The study used the Credit card Fraud Detection Dataset from Kaggle. Additionally, the Monarch Butterfly Optimization(MBO) Algorithm using SMOTE, RandomSubSampler and Temporal Convolutional Networks are integrated.