Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
A No-Reference Image Quality Assessment Methodology Based on Distortion Information Extraction
Ist Teil von
2023 International Conference on Computer Science and Automation Technology (CSAT), 2023, p.25-27
Ort / Verlag
IEEE
Erscheinungsjahr
2023
Quelle
IEEE Xplore Digital Library
Beschreibungen/Notizen
This paper establishes, through the principles of signal and system theory, that under the DMOS evaluation standard, image quality assessment is exclusively linked to distortion information. We introduce a novel image quality assessment model based on the Denoising Diffusion Probability Model (DDPM). This model utilizes the de noising autoencoder from DDPM for extracting image noise, coupled with a Convolutional Neural Network (CNN) for quality evaluation. By isolating distortion information, the interference from redundant information is minimized, enhancing the efficiency of model training. The model demonstrates superior performance across five datasets, comprising both synthetic and real distortions.