Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
2023 IEEE 8th International Conference on Recent Advances and Innovations in Engineering (ICRAIE), 2023, p.1-6
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Fruit Detection and Recognition Using Faster R-CNN with FPN30 Pre-trained Network
Ist Teil von
  • 2023 IEEE 8th International Conference on Recent Advances and Innovations in Engineering (ICRAIE), 2023, p.1-6
Ort / Verlag
IEEE
Erscheinungsjahr
2023
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Accurate and reliable fruit detection and recognition in orchards is critical for enabling higher-level agriculture tasks such as fruit picking. However, detecting and recognizing fruits with occlusion by neighboring fruits is extremely difficult. Faster R-CNN (Faster Region-based Convolutional Neural Network) is a well-known deep learning technology for object detection and recognition. Thus, this study investigates the application of Faster R-CNN for apple detection and recognition. Two different datasets have been constructed under variable illumination conditions and occlusion; an inter-class dataset that consists of images of apples and oranges, and an intra-class dataset that consists of images of two types of apples, namely fuji and royal gala apples. Results indicate that Faster R-CNN can detect and recognize apples from oranges, and the fuji apple in the orchards, with high accuracy. This suggests that Faster R-CNN can be used practically in the real orchard context.
Sprache
Englisch
Identifikatoren
DOI: 10.1109/ICRAIE59459.2023.10468169
Titel-ID: cdi_ieee_primary_10468169

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX