Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 45
2023 5th International Conference on Applied Machine Learning (ICAML), 2023, p.310-315
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Research on the Application of LSTM-SA-AdaBoost Hybrid Model in Stock Forecasting
Ist Teil von
  • 2023 5th International Conference on Applied Machine Learning (ICAML), 2023, p.310-315
Ort / Verlag
IEEE
Erscheinungsjahr
2023
Quelle
IEEE Explore
Beschreibungen/Notizen
  • To improve the fitting and accuracy of stock prediction, an improved deep neural network combined with AdaBoost model (LSTM-SA-AdaBoost) is proposed. The model feature engineering includes data cleaning, correlation analysis and normalization. The model uses simulated annealing algorithm to optimize the model parameters. The attributes after feature selection will be trained, and the predicted attributes will be predicted and optimized iteratively through the two-layer LSTM network. From the experiment results, it shows that LSTM-SA-AdaBoost algorithm is superior to the unmodified LSTM-AdaBoost model and LSTM-XGBoost model, compared with the single-target feature selection algorithm of LSTM and RNN network models, it has better fitting and better accuracy.
Sprache
Englisch
Identifikatoren
DOI: 10.1109/ICAML60083.2023.00064
Titel-ID: cdi_ieee_primary_10457319

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX