Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 39
ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024, p.10136-10140
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Conformer is All You Need for Visual Speech Recognition
Ist Teil von
  • ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024, p.10136-10140
Ort / Verlag
IEEE
Erscheinungsjahr
2024
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Visual speech recognition models extract visual features in a hierarchical manner. At the lower level, there is a visual front-end with a limited temporal receptive field that processes the raw pixels depicting the lips or faces. At the higher level, there is an encoder that attends to the embeddings produced by the front-end over a large temporal receptive field. Previous work has focused on improving the visual front-end of the model to extract more useful features for speech recognition. Surprisingly, our work shows that complex visual front-ends are not necessary. Instead of allocating resources to a sophisticated visual front-end, we find that a linear visual front-end paired with a larger Conformer encoder results in lower latency, more efficient memory usage, and improved WER performance. We achieve a new state-of-the-art of 12.8% WER for visual speech recognition on the TED LRS3 dataset, which rivals the performance of audio-only models from just four years ago.
Sprache
Englisch
Identifikatoren
eISSN: 2379-190X
DOI: 10.1109/ICASSP48485.2024.10446532
Titel-ID: cdi_ieee_primary_10446532

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX