Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 20
2023 International Conference on Advanced Computing & Communication Technologies (ICACCTech), 2023, p.615-621
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
A Comparative Analysis of Machine Leaming-Based Classifiers for Predicting Diabetes
Ist Teil von
  • 2023 International Conference on Advanced Computing & Communication Technologies (ICACCTech), 2023, p.615-621
Ort / Verlag
IEEE
Erscheinungsjahr
2023
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Diabetes, caused by insulin resistance, is a global health issue. Mismanagement of this chronic condition is impacted by a sedentary lifestyle, aging, food, dietary habits, and elevated blood pressure, which can cause serious complications. These include heart and vascular disease, renal impairment, neuropathy, and visual difficulties. Thus, early diabetes detection and management are crucial. Machine learning can provide essential insights from diabetic patients' diagnostic medical data. This work applies supervised machine learning algorithms to PIMA dataset for optimum diagnosis accuracy. In this paper, we implemented eight machine learning algorithms including Logistic Regression, Decision Tree, ADA Boost, Gradient Boosting, K nearest Neighbor (KNN), Random Forest (RF), Support Vector Machine (SVM), and Naive Bayes on PIMA database and compared them for early diabetes prediction using a variety of evaluation criteria to evaluate the prediction results and to predict the best model.
Sprache
Englisch
Identifikatoren
DOI: 10.1109/ICACCTech61146.2023.00105
Titel-ID: cdi_ieee_primary_10441773

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX