Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 172
China communications, 2023-12, Vol.20 (12), p.66-77
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Deep learning based signal detector for OFDM systems
Ist Teil von
  • China communications, 2023-12, Vol.20 (12), p.66-77
Ort / Verlag
China Institute of Communications
Erscheinungsjahr
2023
Quelle
IEEE Xplore Digital Library
Beschreibungen/Notizen
  • In this paper, we propose a novel deep learning (DL)-based receiver design for orthogonal frequency division multiplexing (OFDM) systems. The entire process of channel estimation, equalization, and signal detection is replaced by a neural network (NN), and hence, the detector is called a NN detector (N 2 D). First, an OFDM signal model is established. We analyze both temporal and spectral characteristics of OFDM signals, which are the motivation for DL. Then, the generated data based on the simulation of channel statistics is used for offline training of bi-directional long short-term memory (Bi-LSTM) NN. Especially, a discriminator (F) is added to the input of Bi-LSTM NN to look for subcarrier transmission data with optimal channel gain (OCG), which can greatly improve the performance of the detector. Finally, the trained N 2 D is used for online recovery of OFDM symbols. The performance of the proposed N 2 D is analyzed theoretically in terms of bit error rate (BER) by Monte Carlo simulation under different parameter scenarios. The simulation results demonstrate that the BER of N 2 D is obviously lower than other algorithms, especially at high signal-to-noise ratios (SNRs). Meanwhile, the proposed N 2 D is robust to the fluctuation of parameter values.
Sprache
Englisch
Identifikatoren
ISSN: 1673-5447
DOI: 10.23919/JCC.fa.2021-0347.202312
Titel-ID: cdi_ieee_primary_10359437

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX