Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 145
2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2023, p.4529-4538
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Dual-level Interaction for Domain Adaptive Semantic Segmentation
Ist Teil von
  • 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2023, p.4529-4538
Ort / Verlag
IEEE
Erscheinungsjahr
2023
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Self-training approach recently secures its position in domain adaptive semantic segmentation, where a model is trained with target domain pseudo-labels. Current advances have mitigated noisy pseudo-labels resulting from the domain gap. However, they still struggle with erroneous pseudo-labels near the boundaries of the semantic classifier. In this paper, we tackle this issue by proposing a dual-level interaction for domain adaptation (DIDA) in semantic segmentation. Explicitly, we encourage the different augmented views of the same pixel to have not only similar class prediction (semantic-level) but also akin similarity relationship with respect to other pixels (instance-level). As it's impossible to keep features of all pixel instances for a dataset, we, therefore, maintain a labeled instance bank with dynamic updating strategies to selectively store the informative features of instances. Further, DIDA performs cross-level interaction with scattering and gathering techniques to regenerate more reliable pseudo-labels. Our method outperforms the state-of-the-art by a notable margin, especially on confusing and long-tailed classes. Code is available at https://github.com/RainJamesY/DIDA
Sprache
Englisch
Identifikatoren
eISSN: 2473-9944
DOI: 10.1109/ICCVW60793.2023.00487
Titel-ID: cdi_ieee_primary_10350512

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX